Decay Properties of the Connectivity for Mixed Long Range Percolation Models on \mathbb{Z}^d

Gastão A. Braga · Leandro M. Ciolleti · Rémy Sanchis

Received: 20 July 2006 / Accepted: 10 May 2007 / Published online: 27 June 2007 © Springer Science+Business Media, LLC 2007

Abstract In this short note we consider mixed short-long range independent bond percolation models on \mathbb{Z}^{k+d} . Let p_{uv} be the probability that the edge (u, v) will be open. Allowing a *x*, *y*-dependent length scale and using a multi-scale analysis due to Aizenman and Newman, we show that the long distance behavior of the connectivity τ_{xy} is governed by the probability p_{xy} . The result holds up to the critical point.

1 Introduction

In this short note we consider a long range percolation model on $\mathbb{L} = (\mathbb{Z}^{k+d}, \mathbb{B})$, where $u \in \mathbb{Z}^{k+d}$ is of the form $u = (\vec{u}_0, \vec{u}_1)$, with $\vec{u}_0 \in \mathbb{Z}^k$ and $\vec{u}_1 \in \mathbb{Z}^d$ and \mathbb{B} is the set of edges (unordered pairs) $(u, v), u \neq v \in \mathbb{Z}^{k+d}$. To each edge (u, v) we associate a Bernoulli random variable ω_b which is open $(\omega_b = 1)$ with probability

$$p_{uv} = p_{uv}(\beta) \equiv \beta J_{uv}, \quad u, v \in \mathbb{Z}^{k+d}$$
(1)

where $\beta \in [0, 1]$ and, for $\epsilon > 0$, J_{uv} is

$$J_{uv} = \begin{cases} 2(1 + \|\vec{u}_1 - \vec{v}_1\|^{d+\varepsilon})^{-1} & \text{if } \vec{u}_0 = \vec{v}_0 \text{ and } \vec{u}_1 \neq \vec{v}_1; \\ 1 & \text{if } \vec{u}_1 = \vec{v}_1 \text{ and } \|\vec{u}_0 - \vec{v}_0\| = 1; \\ 0 & \text{otherwise.} \end{cases}$$
(2)

We denote the event { $\omega \in \Omega$: there is an open path connecting *x* to *y*} by { $x \leftrightarrow y$ } and define the connectivity function by $\tau_{xy} \equiv P\{x \leftrightarrow y\}$. Let $||x|| = |x_1| + \cdots + |x_d|$ be the L^1 norm on \mathbb{Z}^d and $\beta_c = \sup\{\beta \in [0, 1] : \chi(\beta) < \infty\}$. Our aim is to show the following result

Theorem 1 Suppose $\beta < \beta_c$ and consider the long range percolation model with p_{uv} given by (1) and J_{uv} given by (2). Then there exist positive constants $C = C(\beta)$ and $m = m(\beta)$

G.A. Braga (🖾) · L.M. Ciolleti · R. Sanchis

Departamento de Matemática, UFMG, Caixa Postal 1621, 30161-970 Belo Horizonte, MG, Brazil e-mail: gbraga@mat.ufmg.br

such that

$$\tau_{xy} \le \frac{C \ e^{-m\|\vec{x}_0 - \vec{y}_0\|}}{1 + \|\vec{x}_1 - \vec{y}_1\|^{d + \varepsilon}}$$
(3)

for all $x, y \in \mathbb{Z}^{k+d}$.

The above result says that que probability p_{uv} dictates the long distance behavior of the connectivity function in the subcritical regime (similar lower bounds are easily obtained from the FKG inequality). For the one dimensional \mathbb{Z}^{0+1} percolation model, the above result is known to hold, see [1], the same being true for one dimensional \mathbb{Z}^{0+1} O(N) spin models, $1 \le N \le 4$, see [2]. The result is expected to hold in the *d*-dimensional \mathbb{Z}^{0+d} lattice but it is not clear how to prove it if $\beta < \beta_c$, although one can see it holds if $\beta \approx 0$. Our upper bound (3) holds if $\beta < \beta_c$ and for (k + d)-dimensional lattices, $k \ge 0$ and $d \ge 1$. For lattice spin models, the upper bound (3) is known at the high temperature regime, see Ref. [3] for bounded spin models and Ref. [4] for unbounded (and discrete) ones. Reference [5] extends some of the results of [3, 4] to a general class of continuous spin systems, with J_{uv} given by (1) and $u, v \in \mathbb{Z}^{0+d}$, while [6] considers the more general mixed decay model. In both cases, the polymer expansion (see [7] and references therein) is used.

The mixed percolation model we study is motivated by equivalent ferromagnetic models that arise as special cases of discrete space-time field theories as in [6] where the discretized Laplacian is replaced by a nearest neighbor ferromagnetic interaction. The model is interesting by itself and it has already appeared in the literature [8].

The Hammersley–Simon–Lieb inequality [9–11] is a key ingredient in [1] and [2] and here we also adopt this "correlation inequality" point of view. For completeness, we state this inequality in the form we will use, see [12]. For each set $S \subset \mathbb{Z}^d$, let $\tau_{xy}^S \equiv P\{x \leftrightarrow y \text{ inside } S\}$. Then

Hammersley–Simon–Lieb Inequality (HSL) Given $x, y \in \mathbb{Z}^{k+d}$, if $S \subset \mathbb{Z}^{k+d}$ is such that $x \in S$ and $y \in S^c$, then

$$\tau_{xy} \leq \sum_{\{u \in S, v \in S^c\}} \tau_{xu}^S p_{uv} \tau_{vy}.$$

We now recall some known facts about the long range percolation model defined by (1) and (2). Let $\theta(\beta, \varepsilon) = P_{\beta,\varepsilon}\{0 \leftrightarrow \infty\}$ be the probability that the origin will be connected to infinity. If $k + d \ge 2$ is the space dimension then, by comparing with the nearest neighbor model and for any positive ε , there exists $\beta_c = \beta_c(d, \varepsilon)$ such that $\theta(\beta, \varepsilon) = 0$ if $\beta < \beta_c$ and $\theta(\beta, \varepsilon) > 0$ if $\beta > \beta_c$. For k = 0 and d = 1, it is known that the existence of β_c depends upon ε , if $\varepsilon > 1$ then there is no phase transition [13] while it shows up if $0 \le \varepsilon \le 1$, see [14]. A phase transition can also be measured in terms of χ , the mean cluster size, given by $\chi = \sum_x \tau_{0x}$. Let $\pi_c(d, \varepsilon) = \sup\{\beta : \chi(\beta, \varepsilon) < \infty\}$. Then, it comes from the FKG Inequality [15] that $\pi_c(d, \varepsilon) \le \beta_c(d, \varepsilon)$. The equality $\pi_c(d, \varepsilon) = \beta_c(d, \varepsilon)$ holds for the class of models we are dealing with and it was proved independently by Aizenman and Barsky in [16] and Menshikov in [17]. We will use the condition $\chi < \infty$ to characterize the subcritical region.

The remaining of this note is divided as follows: in the next section we prove Theorem 1 and in Sect. 3 we make some concluding remarks regarding the validity of our results to ferromagnetic spin models.

2 Proof of the Theorem

Let $x = (\vec{x}_0, \vec{x}_1) \in \mathbb{Z}^{k+d}$. We first observe that

$$\chi = \sum_{n \ge 0} \sum_{\|\vec{x}_0\| = n} \sum_{\vec{x}_1 \in \mathbb{Z}^d} \tau_{0x}$$

Since $\chi < \infty$, given $\lambda \in (0, 1)$, there exists $n_0 \in \mathbb{N}$ such that, for all $n \ge n_0$, we have

$$\sum_{\|\vec{x}_0\|=n}\sum_{\vec{x}_1\in\mathbb{Z}^d}\tau_{0x}<\lambda.$$

Consider now $x = (\vec{x}_0, \vec{x}_1)$ with $\|\vec{x}_0\| > n_0$. Using the translation invariance of the model and applying iteratively the HSL Inequality with $S = \{x \in \mathbb{Z}^{k+d}; \|\vec{x}_0\| \le n_0\}$, we obtain

$$\sum_{\vec{x}_1 \in \mathbb{Z}^d} \tau_{0x} \le \lambda^{\lfloor \| \vec{x}_0 \| / n_o \rfloor} \le C_1 \exp(-(m+\delta) \| \vec{x}_0 \|),$$

where $\lfloor r \rfloor$ denotes the integer part of r, $\delta > 0$ is given and m is defined by $e^{-(m+\delta)} = \lambda^{1/n_0}$. Next we show that a HSL type inequality holds for the modified connectivity function $T_m(x, y) \equiv e^{m \|\vec{x}_0 - \vec{y}_0\|} \tau_{xy}$ and for the set $S = C_r(x) \equiv \{z \in \mathbb{Z}^{k+d}; \|\vec{x}_1 - \vec{z}_1\| \le r\}$. Applying the HSL Inequality with the above specified S, we have

$$\tau_{xy} \leq \sum_{\substack{u \in \mathcal{C}_r(x)\\v \in \mathcal{C}_r^c(x)}} \tau_{xu} p_{uv} \tau_{vy}.$$

Then, for $y \in C_L^c(x)$ for some L > 1, we obtain

$$T_{m}(x, y) = e^{m \|\vec{x}_{0} - \vec{y}_{0}\|} \tau_{xy} \leq e^{m \|\vec{x}_{0} - \vec{y}_{0}\|} \sum_{\substack{u \in C_{L}(x) \\ v \in C_{L}^{C}(x)}} \tau_{xu} p_{uv} \tau_{vy}$$
$$\leq \sum_{\substack{u \in C_{L}(x) \\ v \in C_{T}^{C}(x)}} e^{m \|\vec{x}_{0} - \vec{u}_{0}\|} \tau_{xu} p_{uv} e^{m \|\vec{y}_{0} - \vec{v}_{0}\|} \tau_{vy}$$

since we necessarily have that $\vec{u}_0 = \vec{v}_0$. It then follows that

$$T_m(x, y) \leq \sum_{\substack{u \in C_L(x) \\ v \in C_L^c(x)}} T_m(x, u) p_{uv} T_m(v, y).$$

We remark that $\chi_m \equiv \sum_{x \in \mathbb{Z}^{k+d}} T_m(0, x) < \infty$ is finite if $\beta < \beta_c$ since

$$\sum_{x \in \mathbb{Z}^{k+d}} T_m(0,x) = \sum_{x \in \mathbb{Z}^{k+d}} e^{m \|\vec{x}_0\|} \tau_{0x} \le \sum_{k \ge 0} \sum_{\|\vec{x}_0\| = k} e^{m \|\vec{x}_0\|} \sum_{\vec{x}_1 \in \mathbb{Z}^d} \tau_{0x}$$
$$\le \sum_{k \ge 0} 2dk^{d-1} e^{-\delta k} < \infty.$$

Deringer

From now on we closely follow Sect. 3 of [1] and prove the polynomial decay of T_m up to the critical point. For fixed $x, y \in \mathbb{Z}^{k+d}$ and $L \equiv \|\vec{x}_1 - \vec{y}_1\|/4$, we know that

$$T_{m}(x, y) \leq \sum_{\substack{u \in \mathcal{C}_{L}(x) \\ v \in \mathcal{C}_{L}^{c}(x)}} T_{m}(x, u) p_{uv} T_{m}(v, y)$$

$$\leq \sum_{\substack{u \in \mathcal{C}_{L}(x) \\ v \in \mathcal{C}_{L}^{c}(x) \cap \mathcal{C}_{3L}(x)}} T_{m}(u, x) p_{uv} T_{m}(v, y) + \sum_{\substack{u \in \mathcal{C}_{L}(x) \\ v \in \mathcal{C}_{L}^{c}(x) \cap \mathcal{C}_{3L}^{c}(x)}} T_{m}(x, u) p_{uv} T_{m}(v, y).$$
(4)

Let

$$\mathbb{T}_m(L) \equiv \sup\{T_m(0,u); u \in \mathcal{C}_L^c(0)\} \text{ and } \gamma_L \equiv \sum_{\substack{u \in \mathcal{C}_L(x)\\v \in \mathcal{C}_L^c(x)}} T_m(x,u) p_{uv}$$

Then, the first term on the r.h.s. of (4) is bounded above by $\mathbb{T}_m(L/2)\gamma_L$ while the second one is bounded by

$$\frac{2^{d+\varepsilon}2\beta\chi_m^2}{1+\|\vec{x}_1-\vec{y}_1\|^{d+\varepsilon}},$$

leading to

$$T_m(x, y) \leq \frac{2^{d+\varepsilon} 2\beta \chi_m^2}{1 + \|\vec{x}_1 - \vec{y}_1\|^{d+\varepsilon}} + \gamma_L \mathbb{T}_m\left(\frac{L}{2}\right).$$

Now, since $\chi_m < \infty$ for $\beta < \beta_c$ and since $\sum_u p_{0u} < \infty$, we have that $\gamma_L \to 0$ as $L \to \infty$. For $\alpha \in (0, 2^{-(d+\varepsilon)})$, there exists $L_0 > 0$ such that $\gamma_L < \alpha$ for all $L \ge L_0$. Considering $L > L_0$, it follows that

$$\mathbb{T}_m(L) \le \frac{2^{d+\varepsilon} 2\beta \chi_m^2}{1 + \|\vec{x}_1 - \vec{y}_1\|^{d+\varepsilon}} + \alpha \mathbb{T}_m\left(\frac{L}{2}\right).$$
(5)

Iterating (5) *n* times, with *n* the smallest integer for which $L2^{-n} \le L_0$, we have for all $L > L_0$

$$\mathbb{T}_m(L) \leq \frac{2\beta \chi_m^2 \sum_{j=0}^{n-1} (\alpha 2^{d+\varepsilon})^j}{1 + \|\vec{x}_1 - \vec{y}_1\|^{d+\varepsilon}} + \alpha^n \mathbb{T}_m\left(\frac{L}{2^n}\right).$$

Noting that $T_m(x, y) \leq \mathbb{T}_m(L)$, that $\mathbb{T}_m(L) \leq 1$ for any L > 0 and that

$$\begin{aligned} \alpha^n &\leq 2^{-(d+\varepsilon)n} = \frac{1}{(1+L^{d+\varepsilon})} \frac{(1+L^{d+\varepsilon})}{2^{(d+\varepsilon)n}} \leq \frac{2 \cdot 2^{d+\varepsilon}}{1+\|\vec{x}_1 - \vec{y}_1\|^{d+\varepsilon}} \left(\frac{L}{2^n}\right)^{d+\varepsilon} \\ &\leq \frac{2(2L_0)^{d+\varepsilon}}{1+\|\vec{x}_1 - \vec{y}_1\|^{d+\varepsilon}}, \end{aligned}$$

we can conclude that, for $\beta < \beta_c$,

$$\tau_{xy} \le \frac{Ce^{-m\|\vec{x}_0 - \vec{y}_0\|}}{1 + \|\vec{x}_1 - \vec{y}_1\|^{d+\varepsilon}}$$

and the bound (3) holds.

Deringer

3 Concluding Remarks

The strategy used to prove Theorem 1 can also be applied to \mathbb{Z}^d ferromagnetic models with free boundary conditions and pair interaction J_{uv} given by (2). For this class of models the Griffiths inequalities [18, 19] are valid, guaranteeing the positivity of spin-spin correlations $\langle \sigma_x \sigma_y \rangle$. Simon–Lieb Inequality also holds in this case (see [7] and references therein), with p_{uv} replaced by βJ_{uv} , where β is the inverse of the temperature, and with τ_{xy} replaced by $\langle \sigma_x \sigma_y \rangle$. Finally, since the uniqueness of the critical point is guaranteed in [20], the results of Sect. 2 are also valid for these models.

Acknowledgements G.B. was partially supported by CNPq; L.C. acknowledges CNPq for a graduate scholarship; R.S. was partially supported by Pró-Reitoria de Pesquisa—UFMG under grant 10023.

References

- 1. Aizenman, M., Newman, C.M.: Discontinuity of the percolation density in one-dimensional $1/|x y|^2$ percolation models. Commun. Math. Phys. **107**(4), 611–647 (1986)
- Spohn, H., Zwerger, W.: Decay of the two-point function in one-dimensional O(N) spin models with long-range interactions. J. Stat. Phys. 94, 1037–1043 (1999)
- 3. Gross, L.: Decay of correlations in classical lattice models at high temperature. Commun. Math. Phys. **68**, 9–27 (1979)
- Israel, R., Nappi, C.: Exponential clustering for long-range integer-spin systems. Commun. Math. Phys. 68, 29–37 (1979)
- Procacci, A., Scoppola, B.: On decay of correlations for unbounded spin systems with arbitrary boundary conditions. J. Stat. Phys. 105, 453–482 (2001)
- Thebaldi, R.S., Pereira, E., Procacci, A.: A cluster expansion for the decay of correlations of light-mass quantum crystals and some stochastic models under intense noise. J. Math. Phys. 46, 053303 (2005)
- Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View, 2nd edn. Springer, New York (1987)
- Sidoravicius, V., Surgailis, D., Vares, M.E.: On the truncated anisotropic long-range percolation on Z². Stoch. Process. Appl. 88, 337–349 (1999)
- 9. Hammersley, J.M.: Percolation processes. Lower bounds for the critical probability. Ann. Math. Stat. 28, 790–795 (1957)
- Simon, B.: Correlation inequalities and the decay of correlations in ferromagnets. Commun. Math. Phys. 77, 111–126 (1980)
- 11. Lieb, E.H.: A refinement of Simon's correlation inequality. Commun. Math. Phys. 77, 127–135 (1980)
- Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behaviour in percolation models, J. Stat. Phys. 36, 107–143 (1984)
- 13. Schulman, L.S.: Long range percolation in one dimension. J. Phys. Lett. A 16, L639 (1983)
- 14. Newman, C.M., Schulman, L.S.: One-dimensional $1/|j i|^s$ percolation models: the existence of a transition for $s \le 2$. Commun. Math. Phys. **104**, 547–571 (1986)
- 15. Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)
- Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)
- Menshikov, M.V.: Coincidence of critical points in percolation problems. Sov. Math. Dokl. 33, 856–859 (1986)
- 18. Griffiths, R.B.: Correlations in Ising ferromagnets, I. J. Math. Phys. 8, 478-483 (1967)
- Griffiths, R.B.: Correlations in Ising ferromagnets, II: external magnetic fields. J. Math. Phys. 8, 484–489 (1967)
- Aizenman, M., Barsky, D.J., Fernández, R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47(3–4), 343–374 (1987)